Skip to Content Skip to Search Go to Top Navigation Go to Side Menu

"Colour-Systems" Category

Maxwells Colour System

Sunday, February 11, 2018

The scientist James Clerck Maxwell discovered the additive colour system and showed the first colour photography. He lived in the 19 Century influenced by the Works of Isaac Newton and Thomas Young. He has impact on our knowledge of the Saturn Rings, Electromagnetic waves and the RGB colours.

Maxwell Photography

In his student years at the Cambridge he was fascinated by the questions:

What are colours? Why do we perceive colour? And why are we so coloured?

At that time he read the studies of Thomas Young. Young thought that painters have a much better understanding of colours then scientist had at that time. They used the primary colours to get the full colour spectrum of a painting. He found that there’s a significance of these three primary colours and that Biology has a role to play. He assumed there are three receptors for each of the primary colours in the human brain. By mixing these we receive our full colour view.

Maxwell read about this theory and wanted to prove it by mathematics. He developed a tool to trick the human brain. By spinning the right amounts of red, green and blue on a wheel, it seems like the colours are melting together to white. With this experiment he could prove that what we perceive as white is actually a mix of colours. And that there’s a difference of mixing colours in light and colours in pigments.

Colour Pyramid

From this he developed a Red, Green and Blue colour pyramid. On each corner there is the absolute of one of the primary colours. Towards the middle you get different hues of the colour and the center is white. The Pyramid is built on a x/y Axe. Mapping out a point on the pyramid gives a value of each of the primary colours.

To display his founds, he was invited to give a lecture on colour vision. What he did was to screen the same photograph with a red then green and blue light on top of each other. Where the colours intersect, there is white.

Maxwell Colour Experiment

At this time there was only black and white photography. With this experiment he made the world’s first colour photography. The additive colour system can be understood as the foundation of RGB colours and is used in the screens of most electronic devices today.

Isaac Newtons Colour Wheel

Sunday, February 11, 2018

Around 1665 Isaac Newton first passed white light through a prism and he identified seven colours: red, orange, yellow, green, blue, indigo, and violet. These colours he referred to the colours of the rainbow and that they were analogous to the notes of the musical scale.


In Newton’s color wheel, in which the colors are arranged clockwise in the order they appear in the rainbow, each “spoke” of the wheel is assigned a letter. These letters correspond to the notes of the musical scale.

What he did was that he projected white light through a prism onto a wall and had a friend mark the boundaries between the colours, which he then named. In his diagrams, which show how colours respond to notes, Newton introduced two new colours, orange and indigo. These to colours would correspond to half the steps in the octatonic scale.


In physics terminology, an octave is the frequency range from x to 2x, and that premise holds true for musical octaves. If light behaved like music, then photon frequencies of the spectrum would also range from x to 2x, and their wavelengths, inversely proportional to their frequencies, would too. Instead, the wavelengths of visible light range from 400 to 700 nanometers, which, if translated to sound waves, would be approximately equivalent to a major sixth.
Therefore Isaac Newtons colour theory was actually incorrect as the frequency range in an octave is different than photon frequencies of light spectrum. Although his theory falls apart his experiments with prisms showed us that white light is a mix of different coloured lights.


Friday, February 9, 2018

CIE-1931-System is a color matching system. CIE stands for Commission internationale de l’éclairage, which is an international authority for setting standards related to light and color. In this system the goal is not to describe how colors appear to humans but to categorize and measure colors and create a numerically order. Which then also provides a framework for precisely reproducing the measured color in printing or digitally. It’s a mathematical categorization of colors and it’s based on matching combinations of light to colors that appear to most people in this way.


Light is transformed in wavelength and humans can perceive these waves in between 380nm and 750nm. Wavelengths are absorbed and reflected by objects. Inside the human eye we have our own system of perceiving this colors by conephotoreceptors. We have 3 of them and they’re sensitive to different but overlapping wavelengths of light. L is most sensitive to long wavelengths and therefor red, M to middle-long wavelengths and therefor green and S to short wavelengths and therefor blue.


The cone’s of the eye are stimulated by complex spectral distributions of absorbing or reflecting light and then reduces it to numerical values which represents how much the three cones are stimulated. Important to know is that different spectral distributions can stimulate the cones in exactly the same way. This means we don’t need the original light source to reproduce a certain color but we can create a spectral distribution of light that stimulates the cone in the same way in order to reproduce this exact color if we find the right match. And it’s not only about creating a certain color, but it also deals with showing how to reproduce the difference in brightness of the color. And the CIE-1931-system gives us the information we need to find these matches.


The system has 3 functions called the RGB color matching functions. These are three fixed primary colors and the color matching functions are there to show you the amount of each primary output you need to create a desired color when they’re all mixed.


Hering’s 4-colour wheel

Thursday, February 8, 2018

I am going to explain to you Ewald Hering’s very exciting colour wheel chart containing of not 3 (RGB) but 4 primary colours (RGBY).

Hering was a German physiologist who specialised in colour perception. So basically how our eyes and brains work in relation to colour which we can call “the physiology of visual perception”
A problem that came up was the colour yellow; Helmholtz, another physicist who came op with the RGB model (the Young-Helmholtz theory) had stated that yellow came from a mixture of red and green (so there being 3 primary colours).

For hering this was not in line with the human experience because the sensation of yellow is very important and is not seen as a mixture of something else.

Instead of seeing complementary colours, like in the 3 primary colour wheel (RGB), Hering talked about opposing colours. Being; blue versus yellow, red versus green and black versus white.


So next to black and white there would be 4 colours which can occur without the “help” of another colour.
Every perception (what we see) is a mixture of the six basic sensations (so these four colours plus black and white) opposing each other and thus interacting.

Hering called these colours the “psychological primaries”.

Hering states that in the human eye thus brain there are three processes happening at the same time in order to see colour; the red-green, yellow-blue and black and white sensation. Later on I will explain why Hering also calls these sensations the “opposing pairs”.

(In his system, red green yellow and blue can be seen as primary colours. Anyone who is seeing orange can imagine it to be a mix of red en yellow. But no one looks at red, yellow or blue and sees it as a mixture of other colours.)

Hering wasn’t the first to talk about 4 primary colours. Before him so did Leonardo da Vinci. Only the arranging of the colours in a circular model was something Hering did. So the wheel is his invention with which he proved to have a real point.

The outer ring of the wheel shows how every primary colour has a warm and a cool side.
So warm red is red with a lot of yellow while cool red is more bluish
Warm yellow goes towards red and cool yellow towards green. Etc.

Each primary colour pair in the wheel has the same warm and cool side.
For example: Green and red have yellow for warm and blue for cold which makes them pairing as well as opposing.

Although having the same hot and cold sensations, the opposing colours in the weel cannot be part of each other.
- yellow can be kind of green or red but never blue
- green can be kind of blue or yellow but never red.

Complementary colours complete each other (like in the RGB wheel) but Hering’s opposing colours do the exact opposite.

A lot of us have learned in high school that there are three primary colours; red yellow and blue. The thing is actually that this 3 primary colour wheel is how to mix colours by knowing what colours complement each other and what colours generally look good together.
If we are talking about how we actually see colours, there are 4 primary colours!
So this is the big difference between the two wheels; the three colour wheel is about aesthetics while the 4 colour wheel (Hering’s) is about the psychological relationship we have towards colour.


You have to look at the 4 colour wheel like meters in your head. When the meter goes one way, there is more red, if it goes the other way you get green. If the meter stays in the middle you get zero so no colour (or actually a kind of greyish or brownish), same with yellow and blue.
Then at the same time you have a meter that, for example, goes from a reddish yellow to a greenish yellow and that goes from a yellowish green to a blueish green
And then there is also a meter that adds more or less black or white, also changing the colour.

R – 0 – G , so there is no greenish red
B – 0 – Y , so there is no yellowish blue

There is a greenish blue or a reddish blue (purple)
There is also a greenish yellow or a reddish yellow (orange)

Hering’s colour wheel is used a lot because it shows how the eye naturally perceives colour. So it’s less a bout just mixing paint or seeing how colors can be made in different media in what case you would need only three colours (RGB).

Instead, the wheel is better at showing what happens in the upper, brain level, and describing humans colour sensations.

CMN Colour System

Thursday, February 8, 2018





The CMN system was first introduced in Venice, 1986. Colours transform; they get brighter and darker until they eventually become white or black, as well as altering the quality of transparency and reflectiveness. The system shows why and how colours appear, change and disappear. Eat point of the tetrahedral structure marks the different qualities in reflectiveness, transparency, brightness and darkness the colour can posses. This single tetrahedron can be combined with others and create a complete range of spacial models required to find the origins of the colour as well as reflect the intentions of the observer. Despite transparency and reflection stemming from an object which is illuminated, the colours appearing will be the result of the contribution made by the observer. The effect these two qualities have on colours is at the forefront of this colour system, as it is the first to consider transparency and reflection in a colouring ordering system.

The tetrahedron constructionwas a form first seen in Plato’s geometrical idea of colour. The radiance must appear along side the colours and have equal value, only white being allowed dominance. The tetrahedron is taken as a basis, three can be assembled with their tip representing white interlocking acting as the central point and remains colourless. This forms a second triangular plane with a colour appointed to eat corner. The white centre being empty allows colours to be mixed. This idea given by Plato is not a formally constructed colour system, rather the personal view is intended to aid understanding the colour mixtures he describes.       pyt02    pyt03

Michel Albert-Vanel’s Planetary Colour-System

Thursday, February 8, 2018

In 1983, the Planetary Colour-System, was introduced by frenchman Michel Albert-Vanel, with the intention to organise colour perception multidimensionally.

Albert-Vanel created a so-called Plantetaric Room, in which the colours move like planets in a solar system. The floating planets represent four primary colours, which refer to the psychological primary-colours of Ewald Hering. Albert-Vanel incorporated Herings’ psychological primary colours (Yellow, Red, Green, Blue) into his planetary room. The secondary colours – that connect the primary-colours – are moons and thus orbit the planets.


We almost never see colours isolated but in combination with others, which puts them directly into a context. The planetary system tries with the introduction of new parameters to describe this context in which a colour exists. In order to point out an individual colour, contrast and material are added to the usual parameters of hue, brightness and saturation.


The contrast-parameter unites three new scales (again hue, brightness and saturation) describing a group of colours (the context), to later point out the individual isolated colour.

The scales of the material-parameter describe first if a colour is active (light) or passive (pigment), second if it is transparent or opaque and thirdly: matte or gloss.

With the incorporation of this context a colour is put in, the planetary system involves the natural effects of our colour perception. It considers, that we see colours differently depending on the surrounding it is put in.


Log in