
Fig. 12  Code written 
in Whitespace

Fig. 11  A program in Piet 
calculating the day of the week

Fig. 4  DeCSS, DVD logo

Fig. 1  qrpff tie with 
DeCSS algorithm

Fig. 10  “Hello World”
program in Piet

Fig. 5  An excerpt from “Hello World”
program in Shakespeare

Fig. 9  A program that prints out the word “Piet”

Fig. 3  DeCSS Haiku

Fig. 6  Program in LOLCODE that counts
from 0 to 9 and prints out the numbers

Fig. 7  “Hello World” program
written in brainfuck

Fig. 13  Whitespace code 
when all document is selected

Fig. 2  DeCSS, The Movie

Fig. 8  Screenshots of programming performance videos in bodyfuck



Thesis by Medeina Musteikytė
Design by Dirk Verweij and Medeina Museikytė
Graphic Design Department
Gerrit Rietveld Academie 2016



Introduction
Algorithmic/Code art is often addressed as one 
of the digital art forms. Formally this is where 
it belongs together with all sorts of works 
produced by generative digital software. Although 
algorithms clearly function as our controlled 
instruments, they often outgrow their primary 
function. Algorithmic art can be experimental, 
explorative, provocative and conceptual; on a 
bigger scale it can also change the way we think, 
who we vote for, the things we buy, music we 
listen to… or even determine who we date. In this 
way, cultural processes are becoming products 
of algorithms while global society is being shaped 
and formed by the hands of programmers. 

“If we live in the machine age, then 
algorithms are the soul of the machine. 
Every time we commune with a computer, 
there’s an algorithm dancing within, leading 
us along a winding, pre-ordained route. 
Tweak the algorithm and you’ve toppled 
a dictator. Modify another and a baby is 
born in Berlin. There’s even an algorithm, 
rendered optically, that lets color blind 
people see the color red in all its shocking 
glory for the first time.” 1  

Algorithm is a part of how we create our culture 
over time and  it is not bound to the limits of 
computer, its existence dates back to the first 
Babylonian calculation systems carved on clay 
plates and expands beyond the software we 
use nowadays. The definition of an algorithm 
describes it as  

“a self contained step-by-step set of opera-
tions to be performed”. 2 



It is a certain procedure that can be expressed in 
variety of languages or systems while remaining 
always active and result-producing process. In 
any existing form, algorithm has its inherent 
functionality and is rarely dissociated from it. 
However, not every code is meant to be run or 
executed; it might be as well perceived as text or 
object, language structure or a creative system 
of thought. The form of abstraction it translates 
to in order to perform certain commands 
deserves a separate reflection disconnected 
from the end result of its function.

 “Coders are deconstructing and 
re-constructing language structures – quite 
similar to what many conceptual artists do 
in their works. ” 3 

If algorithm is not only a tool, the relationship 
between its language and performance of given 
commands gains certain complexity and opens 
new directions in the process of programming.

Code as a form of free speech
In March 2015 the world’s first Algorithmic 
Auction was held in New York to showcase 
the aesthetic beauty and unique influence of 
algorithms. The auction includes software 
licenses related to a range of significant and 
archival historic code works. All the works were 
successfully sold marking a key moment of pure 
code officially entering the sphere of art.

“The beauty of the code is that it is
 a way of thinking” 

stated Daniel Benitez, a chief technology officer 
of Bardan Cinema in Miami, who bought a cobalt 
blue silk necktie for $2,500 in the Algorithm 
Auction (Fig. 1). This original piece of neck-wear 



in white frame is inscribed with six lines of qrpff 
algorithm that decodes CSS, the DVD Content 
Scrambling System.
Moreover, this object embodies an act of civil 
disobedience; a code as a form of free speech. 
When MIT student Keith Winston and his friend 
Marc Horowitz were writing this code in 2001, 
they were not thinking about the role their 
work would get in the art world, neither they 
were considering it as performative piece or an 
artefact. In K. Winstein’s words for them it was 

“programming to make a point. That point 
was about code as creative means of 
expression.” 4

In their case, the creative expression was 
to distill a complex algorithm to its essence  
for demonstrating the simplicity of secret 
scrambling method Hollywood used to protect 
their DVDs. The restricting software wouldn’t 
allow to fast-forward past previews, copy 
movies or play DVDs in a country where it wasn’t 
intended to sale. The secrecy also gave the 
studios leverage over manufacturers making 
them agree on certain conditions in order to 
produce DVD players. 

“I believed, then and now, that it’s a lousy 
idea to restrict innovation and tinkering 
just to big manufacturers with lawyers. We 
all benefit when creativity can take flight 
anywhere.” 4 

− said Keith Winstein who just wanted to learn to 
build his own player at that time and decided to 
pick up the DVD descrambling code, called DeCSS 
which already circulated in the underground. 
The DeCSS procedure became publicly known 



in 1999 and spread out widely with at least 
42 different versions and encryptions. The 
algorithm sets out a procedure that copyright 
holders still regard to as a criminal act. The 
entertainment industry responded with lawsuits 
against hundreds of people who had republished 
DeCSS, arguing that it revealed a trade secret 
and was a prohibited circumvention “device” 
or “machine”. The efforts programmers put to 
make the point that “code is speech” made the 
algorithm impossible for lawyers to eradicate. 
Out there was a haiku poem explaining the 
method, Starr-wars like animation, an alternative 
rock song and  a voice recording of dramatic 
reading — all representing the same source code. 
DeCSS movie file (Fig. 2) was created by Samuel 
Hocevar, an engineering student in France.
He applied the “Star Wars” introduction part 
aesthetics to the lines of DeCSS code and 
made them scroll off into space throughout his 
“movie”. 
Another example- DeCSS Haiku (Fig. 3)

“A program is a literary work. The idea was 
to show how strange and difficult it is to 
classify computer programs and technical 
information as something other than 
speech” 5 

This is how Seth Schoen described his work ‒ 
456 stanzas of haiku poem explaining the DeCSS 
algorithm. His goal for writing this poem was to 
prove that source code should be considered 
as speech and hence should be given the same 
legal protections as free speech. Not meant 
to be interpreted by an average viewer, this 
haiku can easily be transformed back into a 



functioning program if read by a programmer.
DeCSS, DVD logo (Fig. 4) formed out of the DeCSS 
source code characters was generated using the 
MosASCII tool created by Robert DeFusco. To 
view the full code (some of the characters are 
made invisible by having 0 opacity) one has to 
“select all” and copy-paste the code to another 
document.
The rest of the examples together with the 
ones described above are gathered in the online 
gallery called “Gallery of CSS descramblers” 
that computer science professor Dr. David S. 
Touretzky created in reaction to the charges put 
against him by copyright holders. This is how 
Touretzky explained his point in court: 

 “I think there are three ideas I’m trying to 
communicate. The first is that computer 
code written in high level language, such 
as C, has expressive content. The second 
is that it’s not possible to distinguish 
between computer code and other forms 
of expression, such as plain English. And 
the third point is that it’s not possible 
to distinguish between what people call 
source code and what they call object 
code” 6

Many Internet activists considered this criminal 
prosecution an attack on the constitutional 
freedom of expression and by encrypting the 
algorithm in many forms helped to convince the 
American Court that the distinction between 
code and speech was false. Consequently, 
qrpff tie was not the first example of creative 
means of DeCSS encryption. The significance 
of K. Winstein’s and M. Horowitz’s work was 



the way they condensed it and made publicly 
available. They rewrote the code 77 times 
each time simplifying the program further and 
further, until from several hundred lines it shrank 
down to only six. It was small enough to fit on a 
necktie, coffee mug or a teeshirt and available 
not only to programmers: “If you type that in, it’ll 
let you watch movies”.  Because of its minimal 
appearance and ease of use this necktie became 
a symbol of a public protest against copyright 
restrictions. 
These restraining conditions provoked a mayor 
turn regarding the computer code as conceptual 
language. The hackers were not aiming for the 
artistic exploration just for its own sake, they 
were pushed into this experimental zone trying 
to circumvent the restrictions. However, it was 
a remarkable start of the whole new dimension 
being added to an art world.

Esolangs: nonfunctional, impractical and useless
More recent code-art works do not prioritize 
functionality of an algorithm, but rather treat it 
as a conceptual process, a system of thought. 
Programming languages, same as regular human 
languages, are transforming and developing 
over time based on what people perceive as 
necessary to communicate ideas and on the 
abstraction methods they apply. 
Apart from huge variety of languages designed 
for practical computing, growing number of 
“useless” experimental programming systems 
appear online. Often referred to as jokes, 
these pieces of weird programmers’ art are 
joined together under the name of “Esolangs” 
an abbreviation that stands for Esoteric 



Programming Languages. As practical use is 
never a goal, an esolang creator experiments 
with programming concepts and explore the 
edges of a programming language with all the 
creative freedom. Often esolangs function 
as immersive works and can be perceived as 
experiential or even performative pieces. 

“Like a Fluxus score, one can choose to 
actually carry out the instructions, but 
it can sometimes be understood by its 
instructions alone. This is true as well for 
the rules that make up a programming 
language – they are both primarily 
dematerialized forms.” 7 

In general, a programming language is designed 
to communicate instructions to the machine, 
particularly a computer. However, it can exist 
as a concept outside or without a computer, 
leaving compiler and software as secondary 
things. That doesn’t make much sense in 
function oriented practical computing, but 
serves well the idea implemented by esolangs. 
A programming language is firstly a set of rules 
of how to combine and interpret a given set of 
symbols, therefore it can be also understood 
by these instructions alone. Even though 
most of the esolangs can be used in writing 
working programs, running the code is not the 
main objective. The attention is pointed to the 
creative process of programming, construction 
of the syntax — a layer that is considered as 
transparent or neutral in traditional computing. 
Despite of the given form, there is no ambiguity 
in the way how computer interprets commands 
of the program. For this reason the only 



touching point between human thought and 
computer logic is the programming language 
and it is definitely something more than just a 
communication tool.
There are various strategies of creating 
an esolang. One of the possible categories 
involves text based programming languages 
that deconstruct the regular vocabulary or 
create their own syntax and set of rules. Most 
of these esolangs function as parodies or jokes, 
providing playful ways of giving instructions to 
the computer. For instance, “Shakespeare” (2001) 
created by  Karl Hasselström and Jon Åslund,  a 
language designed to look like Shakespeare play 
(Fig. 5). The source code resembles a structure 
of a play, with acts and scenes serving as labels 
and characters standing for variables.
Another example of the same kind — “LOLCODE” 
(Fig. 6) (2007 by Adam Lindsay) uses the 
distorted spelling manner of internet lolcat 
memes. The traditional commands are replaced 
by misspelled or ridiculing words, but the code 
can be understood quite simply when being 
familiar with Internet slang. 
This kind of esolangs is usually nothing more 
than funny ways of diminishing the authority of 
the computer by using the means of language. 
They certainly give a feeling of more familiar 
communication adding some human expression, 
but the structure of the code remains untouched 
— the only change is how we read it and see it 
in on the screen. Consequently, these simple 
vocabulary-based esolangs are more of the 
formal experiments of translating the symbols 
from one language to another (some esolangers 



even suggest a term of “esolexicon” for this 
type). However, a straightforward method like 
this makes as much sense to a non-programmer 
and might provoke the first attempt of seeing the 
code out of its traditional definition. 
Even though most of the esolangs use text and 
vocabulary as a tool of expression, the concept 
behind can be based not only on ciphering 
practice. What makes an esoteric programming 
language truly intriguing is the confrontation 
between computer logic and human thinking. 
The esolangs that explore a language as a 
system of thought invite their user to an 
experiential process leaving unlimited space for 
different interpretations. Nevertheless, getting 
the idea of these works is rarely possible by only 
looking to an outcome (if it has one at all). As if 
someone would try read a poem in a language 
they never heard before — it’s only possible 
to state that it is a language and probably has 
a structure of a poem.  Accordingly, the full 
involvement is crucial and inevitable condition 
for being able to navigate in the strange logic 
of esolang and make one’s own discoveries. 
In other words, taking the time to learn the 
set of rules and syntax of a useless “fictional” 
language.
One of the incentives for doing so is a chance of 
challenging the brain and its settled conventions 
of problem solving by finding different methods 
of communicating the ideas in a newly learned 
logic system. Probably the easiest way to get a 
grasp of the concept is by studying one of the 
pioneering and most well-known esolangs called 
“brainfuck” (it is also reffered to as brainf***, 



brainf*ck, brainfsck, b****fuck, brainf**k or BF 
due to an offensive connotation of the word). 
Brainfuck was created in 1993 by Urban Müller 
and became a significant inspiration for later 
development of many other esolangs (Fig. 7). 
The author released it together with a README 
file, which provoked the reader “Who can 
program anything useful with it?:)”. It should 
be mentioned, that despite of its weird syntax, 
this language is Turing-complete, meaning that 
it is theoretically capable of computing any 
computable function and any working program 
can be written using it. Nevertheless, it is 
hard to come up with more complicated and 
unpractical way of programing. What makes it so 
fascinating, is that the language is composed of 
extremely minimal syntax and has a very simple 
idea, though the perception of it is complex and 
highly challenging. As Daniel Temkin puts it in his 
article on brainfuck :

“Programming languages are perhaps the 
most direct conduit between human and 
machine: here our commands translate into 
machine instructions. Brainfuck <…> uses 
this process of translation to explore the 
breakdown of communication and expose 
how computers train us to think. It is an 
experiential piece rather than a practical 
tool to create working programs.” 8

The way how “computers train us to think” 
or else plain computer logic without any 
facilitations for the human mind is materialised 
in the language of brainfuck. Its minimal 
structure consists only of eight commands, each 
represented by a single character:  > < + - . , [ ] .



Increment the pointer (move to the right)
Decrement the pointer (move to the left)
Increment the byte at the pointer.
Decrement the byte at the pointer.
Output the byte at the pointer.
Input a byte and store it in the cell at the 
pointer.
Jump forward past the matching ] 
command if the byte at the pointer is zero.
Jump backward to the matching [ 
command unless the byte at the pointer 
is zero.

Brainfuck has no variables, no conditionals or 
functions — any word commands like “print” or 
letter symbols and numbers are ignored allowing 
the program to be written only in punctuation 
marks. Instead of usual constructs, this program 
has a byte pointer which can be moved  in 
the array of 30000 bytes by incrementing or 
decrementing the value of a cell. The data 
pointer is initially set to zero and it sequentially 
moves from one command to the other. In his 
paper on brainfuck, Daniel Temkin gives a non-
programmer friendly explanation and example:

“In practice, a brainfuck programmer can’t 
write “x = 1” to assign 1 to x, since “x,” “=,” 
and “1” have no meaning, nor do the spaces 
between them. Instead, he must traverse 
memory manually, using angle brackets 
to find a location one can think of as “x,” 
and then populate that memory cell by 
incrementing the value (initialized to zero) 
with a single plus sign:
+

 >
 <
 +
 -
 . 
 ,

 [

 ] 



To store the number five, he would do this:
+++++
While this may seem intuitive, like 
scratching consecutive lines to keep score 
in a card game, complexity multiplies 
quickly. To write the number thirty-six, 
rather than writing thirty-six plus signs, 
one can step back and forth between 
memory cells, incrementing one value 
repeatedly and thereby producing that 
number more compactly. The top line below 
multiplies six by six, but the other lines also 
arrive at a value of thirty-six using other 
programmatic tricks:
++++++[>++++++<-]>
++[>++<+++++++]>
++[>–<——-]>
–[>++<——-]>
–[>–<+++++++]>
+[->-[—<]>-]> [1]
Thirty-six is no longer just a number, it 
is a set of steps to build a number, and, 
without careful reading, could easily 
be mistaken for stored text, a set of 
instructions, or anything else representable 
in programming.” 8

As the example above has shown, to complete a 
simple task like writing a number 36 requires a 
logic strategy and the result can be achieved in 
various ways. Therefore, number 36 becomes a 
resource which allows original problem solving 
approaches to be developed. Obviously it is 
highly time consuming and has a reason to be 
considered completely useless.
Traditional programming languages are meant 



to make the code more human-friendly by having 
descriptive names and commands. They serve as 
abstractions simplifying an exchange between 
human mind and logic of the computer. Brainfuck 
suggests completely opposite strategy. It not 
only refuses any means of making programming 
easier, but it constrains the user to communicate 
commands the way machine perceives it: 

“We’re forced to think in terms closer to 
the machine, and to construct lengthy 
algorithms for simple tasks.” 9

Since there are no cutting corners or 
workarounds, the pure computer logic behind 
the code is exposed in all its glory. This is the 
moment when the human-machine confrontation 
reaches its extreme while the process itself 
turns out to be somewhat irrational – it is getting 
the logic to the point where it becomes not 
logic anymore. Brainfuck erases the boundary 
between human and computer communication 
by immersing our mind in simulative machine’s 
system of thought. Useless as a programming 
language, it serves as an experiential piece 
which alters the concepts of programming.
Similarly, limitation and constraints have 
been explored in various artistic practices. 
For instance, “La disparition“ (“A Void“) a 300 
page-long novel without a single letter “e“ 
by French writer Georges Perec published in 
1969. He applied a method of lipogram – one 
of constrained writing techniques that Oulipo 
collective (“workshop of potential literature“) 
was delving into. Instead of having the story 
overwhelmed by the word puzzle, the author 
finds the obstructions inspiring and liberating his 



creativity in new ways. In the postscript of the 
book Perec describes his experience as amusing: 

“it took my imagination down so many 
intriguing linguistic highways and byways, I 
couldn’t stop thinking about it <...>.” 10 

What starts as a formal set of rules forbidding 
the easiest and most familiar ways of 
communicating, triggers original forms of 
expression and unique creative solutions. And 
again, this is how programming in brainfuck 
works. This approach must have been powerful 
enough to provoke countless adaptations and 
interpretations derived from brainfuck, that later 
joined together under the name of esolangs. Till 
nowadays, it is the programming language to be 
mentioned as the main inspiration among the 
community of esolangers.
One of the cases of taking the same idea further 
is Bodyfuck (2010)(Fig. 8). It is Nik Hanselmann’s 
extension of brainfuck which translates the 
language directly to physical gestures. The act 
of programming gains performative qualities 
by pulling out the process out of the screen. 
Accordingly, programming in this way becomes 
even more absurd, as there is no backspace 
and a single error would ruin the whole thing. 
In order to perform, one has to be as precise 
and mechanic as computer processes are. In 
bodyfuck, traditional text based input methods 
are replaced by physical gestures. 
Although the translation from brainfuck 
commands to their motion equivalents is quite 
direct, the act of programming gets more 
abstract form of expression and introduces new 
ideas. The “dance” still consists of the same 



eight steps that are represented as punctuation 
marks in their textual version and the syntax 
remains minimal and unmodifiable. The dialog 
between human and the machine becomes more 
provocative as the performer is forced to work 
out the code physically. While the method might 
be used to communicate simple instructions as 
“copy“, “smiley“, “hello world“ etc; performances 
like “Walk to 68“ , “going nowhere“, “endless“ 
and “undefined walk“ expand the borders of 
interpretation.

Code made beautiful
Bodyfuck introduces well an idea of 
unconventional input methods in programing 
by replacing symbols with motion gestures. In 
addition to the concept behind, the way “how“ 
the commands are communicated is certainly 
what esolangs are built on. In general, most of 
the programming languages rely on text-based 
input, like the examples mentioned above. 
With this in mind, how would a programming 
language look like, if it had no characters or 
textual symbols? What if the code could not be 
read, but rather judged by the way it looks as any 
other image? And on the whole, how relevant or 
significant that is if the code is beautiful or ugly? 
A  “Hello World” program written in Piet could 
clearly stand for beautiful, except the fact that 
it doesn’t look anything like code (Fig 9, 10, 11). 
A composition of colourful pixels literally prints 
out the words “Hello world” to the screen, and 
the image itself is nothing more than the source 
code of this output. 
Piet was created in 2001 by David Morgan-Marr 
and named after the painter Piet Mondrian 



because of visual resemblance to his abstract 
paintings. In Piet, the code which is usually 
behind and never seen t is meant to have a 
certain aesthetic value. 
Programming in Piet is not only about the best 
rational strategy to get the desired output, but 
also about composing a nice looking image — 
source code. Disregard for functional aspects 
of programming guarantees Piet a steady spot 
in the realm of esolangs. The language’s visual 
qualities are so dynamic because the colour 
pixels do not resemble exact commands. As 
a matter of fact, colour itself doesn’t signify 
anything at all — the code is built on transitions 
between hue and darkness of the pixels. The 
change or transition works as signifier, not a 
symbol, so editing one command - pixel group 
requires modifications in all the following 
chain. This feature gives a possibility for each 
programmer compose original looking images 
even when working with the same commands.

Empty programs
Esolangs like brainfuck, bodyfuck or Piet 
demonstrate that programing language can be 
built on a complex idea and acquire any form. 
Although this might seem perplexing enough, 
some esolangs can be so nonfunctional that 
computer is only a secondary thing they need 
to exist. Moreover, they can even have no code, 
or consist of a file of zero instructions. But can 
it still be considered a program when lacking 
the main component? A definition offered in 
U.S. Copyright Act of 1976 describes computer 
program as 

“a set of statements or instructions to be 



used directly or indirectly in a computer in 
order to bring about a certain result.” 

Referring to this explanation an empty set 
or an empty sequence can still be seen as 
computer program if it is valid within a language. 
By all means, the esolang community is the 
one exploring this notion to its extremes. For 
instance “Compute“ − a programing language 
with no syntax and no result created by 
esolangs.org user nicknamed Orange:

“Compute is esoteric programming 
language that “has no required syntax 
and has the power to solve any and all 
problems. It is smart enough to interpret 
any human language (English, Spanish, 
Latin, etc), any programming language (C++, 
Java, brainfuck, etc), or any kind of data you 
can think of. The only downfall is that there 
is absolutely no I/O.” 11

In other words, the language doesn’t 
actually allow interchange between an 
information processing system-computer 
and the outside world-human. However, it 
implies a fictional execution of any possible 
commands communicated in a natural way 
of speaking. Telling it to print a sample “Hello 
World”command would end up with the same 
result as asking the program to become self-
aware − Compute replies “Done“ while no 
output is actually produced. It goes without 
saying, that Compute is very memory efficient 
and runs extremely fast. Nevertheless, it is all 
based on empty promises and requires total 
trust in its ability to “compute“. This language 
is also questioning ways of human-computer 



communication by applying the opposite 
strategy to brainfuck. It simulates an Utopian 
situation of absolute apprehension when no 
compromises or abstractions are needed − 
machine understands our language structures 
directly like another human being. 
Another twist of the concept of emptiness 
is reflected in an uncommon syntax of 
“Whitespace“ esolang written by Edwin Brady 
and Chris Morris in 2003 (Fig. 12, 13). In contrast 
to the most of text-based languages where 
the spaces between words are ignored (the 
same way as white pixels in Piet), Whitespace 
interpreter considers all the letters and visible 
symbols as null. As a result, only spaces, tabs 
and line-feeds have meaning and are read by 
the compiler. So the code written in whitespace 
looks like an empty sheet—the inscribed code is 
invisible even though it can be read or executed. 
The idea of emptiness has been a source of 
explorations for many artists and thinkers. But 
could a work of programing be seen together 
with other famous art pieces like Nam Jun 
Paik’s “Zen for Film” unexposed film strip, Robert 
Rauschenberg’s “White Paintings“ or John Cage’s 
“4’33“ silent piece? It might be compellingly easy 
to draw direct comparisons between concepts 
behind esolangs and other artworks, for example, 
non-text characters in Whitespace and silence as 
non-sound object in John Cage’s work or quine —

“a self-replicating program that takes no 
input and produces its own source code (its 
medium) as its only output”12

and Nam Jun Paik’s film depicting only its own 
material qualities. Although this may make sense 



and provoke new insights, the works of code, in 
contrast to art pieces mentioned, have only one 
and always the same way of interpretation when 
run by the machine. For that reason concept 
of the blankness has different qualities when 
extended to computational medium, where 
everything is rational and calculated. Computer’s 
performance is based on definite logic and 
programming languages are perceived as formal 
systems. Most of the esolangs use confusing 
commands and unconventional syntax, but 
these instructions are never confusing to the 
machine, they get executed the same way as 
other procedural programming languages. 

Program never meant to be run
Is it possible to confront computer logic by 
designing a programming language which can 
never be actually performed and produces no 
functional programs at all? “Unnecessary”—
an esolang created in 2005 by anonymous 
user nicknamed Keymaker—is challenging the 
conventions of programming to a level of absurd. 
The esolangs.org website describes it as a 
programming language

 “where the existence of a program file is 
considered an error”.13 

It means, that running this program on any 
existing file, even an empty one is impossible 
— the program reports an error and terminates 
immediately. Only the file that cannot be found — 
the one that does not exist leads to successful 
execution of a program. The output consists of 
a file with a single command “NOP” (sometimes 
spelled no-op for “no operation”) which is an 
operation in a programming language that does 



nothing according to esolangs.org definition. 
In Keymaker’s words, the main principle of 
Unnecessary is that 

“Every working program is a null quine. <...> 
The main idea was that the language could 
not have programs, other than the kind that 
don’t exist. (Can it have those then if they 
don’t exist?) Then I noticed that every valid 
program (whatever that is) is a/the null-
quine but that was more of a by-product of 
the main idea. Fitting nonetheless!” 14

The null quine that Keymaker mentions is 
“a special quine that does nothing, created 
from nothing. Because the only successful 
program is one that doesn’t exist, this 
output (of nothing) is identical to its input 
(of nothing). Unnecessary is like a language 
equivalent of the null quine itself.” 15

Unnecessary outplays the computer logic in 
the most rational way that leads to completely 
irrational processes. To understand this paradox 
no computer needs to be actually used, as 
the outcome would not make any sense. 
Programming language that is not meant to be 
executed by a computer, reshapes the boundary 
between machine and human thought.            

Conclusions
Algorithms are powerful and can trigger 
processes, change forms of perception, ways 
of thinking and modes of acting on a larger 
scale. Usually we don’t think of programs as art 
because of their inherent imperative, a practical 
potential to be run or executed, to produce a 
certain result.



Looking at computer programs as always active 
bring them close to Fluxus performance scores.
Even though computer always executes the 
same commands the same way, conceptual 
esolangs offer the possibility of different 
interpretation to the process of programming. 
Experimental language systems open new 
passages of navigating in strange logic 
constraints and even make possible to outgrow 
them. Designed for experience of thinking 
through them, esolangs can be taken away 
from the computer and exist as set of rules and 
instructions describing the behavior of their 
syntax (if it has one). Like some of the Fluxus 
event scores or Oulipean systems, conceptual 
esolangs contain the performance in the text 
itself, while actual execution depends on the 
interpretation and can only be an imaginary one. 
It seems controversial that the programming 
languages that are not intended to be actually 
run by a computer are the most compelling in 
the realm of esolangs. While this term itself 
gathers together works of different weights like 
superficial joke language LOLCODE and complex 
logic systems like brainfuck at the same time, 
their references to the art world might still be a 
question.
Meanwhile, the world’s first Algorithm Auction is 
throwing works of plain code to the art market 
and erasing traditional boundaries by marking a 
turning point of approach towards programming. 
All things considered, programming languages 
are not bound only to computing anymore; 
they become figure of thought and reflection in 
artistic practice.



Works cited
1. Laboratories, Ruse. “This is The Procedure.” 

Artsy. N.p., 19 Mar. 2015. Web. 

<https://www.artsy.net/article/ruse-laboratories-this-is-

the-procedure>.

2. Bronson, Gary J., and David Rosenthal. 

“Introduction to Programming with Visual Basic.Net” 

Google Books. Jones and Bartlett Publishers, 2005. 

3. Pereira, Lorenzo. “Computer Codes Art : A New 

Form of Creativity ?” Widewalls. N.p., 2015. Web. 

<http://www.widewalls.ch/computer-codes-as-new-form-

of-art-computer-arts/>.

4. Winstein, Keith. “Qrpff.” Artsy. Ruse Laboratories, 

17 Mar. 2015. Web. 

<https://www.artsy.net/article/ruse-laboratories-keith-

winstein-creator-of-qrpff>.

5. Schoen, Seth. “The History of the DeCSS Haiku.” . 

N.p., 2001. Web.

 <http://www.loyalty.org/~schoen/haiku.html>.

6. “David S. Touretzky Deposition, in MPAA v. 2600.” 

(PA; July 13, 2000). United States District Court, 

2000. Web. 

<http://cyber.law.harvard.edu/DVD/NY/depositions/

touretzky.html>.

7. Lindgren, Chris. “Interview with New Media Artist 

Daniel Temkin on Esolangs.” Code Work, 15 June 

2015. Web. 

<http://umncodework.github.io/past_events/

codework-interview-temkin-esolangs/>. 

8. Temkin, Daniel. “Brainfuck.” NMC MediaN. N.p., 07 

May 2013. Web. 

<http://median.newmediacaucus.org/tracing-

newmediafeminisms/brainfuck/>.



9.  Lindgren, Chris. “Interview with New Media Artist 

Daniel Temkin on Esolangs.” Code Work, 15 June 

2015. Web. 

<http://umncodework.github.io/past_events/codework-

interview-temkin-esolangs/>.

10. “A Void - Post VII.” Inside Books. N.p., 26 May 

2008. Web. 

<https://insidebooks.wordpress.com/2008/05/26/a-void-

post-vii/>.

11. ”Compute.” - Esolangs.org N.p., 29 Sept. 2011. Web. 

<https://esolangs.org/wiki/Compute>.

12. ”Quine (computing).” Wikipedia. Wikimedia 

Foundation, 8 Dec. 2015. Web. 

<https://en.wikipedia.org/wiki/Quine_(computing)>.

13. “Unnecessary.” Esolangs.org. N.p., 17 Dec. 2014. 

Web. 

<https://esolangs.org/wiki/Unnecessary>.

14. Temkin, Daniel. “Interview with Keymaker.”  N.p., 

6 May 2014. Web. 

<http://esoteric.codes/post/84939008828/interview-

with-keymaker>.

15. Temkin, Daniel. “Unnecessary: Purely Conceptual 

Languages.” N.p., 11 Nov. 2014. Web.  

<http://esoteric.codes/post/102380982203/

unnecessary-purely-conceptual-languages>.



Gerrit Rietveld Academie 2016


	ThesisPoster
	13ThesisONESIDEspreads

